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Abstract

This paper considers sieve estimation of semi-nonparametric (SNP) models
with an unknown density function as non-Euclidean parameter, next to
a finite-dimensional parameter vector. The density function involved is
modeled via an infinite series expansion, so that the actual parameter space
is infinite-dimensional. It will be shown that under weak and verifiable
conditions the sieve estimators of these parameters are consistent, and the
estimators of the Euclidean parameters are

√
N asymptotically normal,

given a random sample of size N . The latter result is derived in a different
way than in the sieve estimation literature. It appears that this asymptotic
normality result is in essence the same as for the finite dimensional case.
This approach is motivated and illustrated by an SNP discrete choice model.
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1. Introduction

Semi-nonparametric (SNP) models (also called semi-parametric models) are mod-
els that are only partially parametrized, and the non-specified part is an unknown
function. See Chen (2007) for a recent review of these models and the various
ways to estimate them. If this unknown function is approximated by a series
expansion, the standard method to estimate these models is the method of sieves
proposed by Grenander (1981). There is also a substantial literature on estimation
of semi-parametric models using nonparametric kernel density and/or regression
estimators (see for example Horowitz 1998), but these approaches are beyond our
scope.
Starting with Geman and Hwang (1982), the consistency of sieve estimators is

well-established in the sieve estimation literature, albeit under rather restrictive
conditions. In this literature the asymptotic normality of a finite subset of para-
meter estimates is proved by using a functional derivative, such as the Frechet,
Hadamard or Gateaux derivatives, together with a related δ-method and Lip-
schitz and equicontinuity conditions. See for example Andrews (1994), Bickel et
al. (1998), Gill (1989), Newey (1997) and Shen (1997), among others. However,
the asymptotic normality conditions involved are very high-level and therefore
difficult to verify, in particular the conditions A through D in Shen (1997). The
latter paper has set the standard for the asymptotic normality of sieve estimators
of smooth functionals. See also Chen and Shen (1998) and Chen (2011) for the
time series case and Chen et al. (2003) for the non-smooth case.
Therefore, the purpose of this paper is to establish weak, verifiable and/or

implementable conditions for the consistency of sieve estimators in general, and
the
√
N asymptotic normality of the sieve estimator of the Euclidean parameter

vector in particular, given a random sample of size N. The i.i.d. assumption is
merely made to keep the paper focused on its essentials. It can easily be relaxed
to the time series case, for example by assuming stationarity and ergodicity, and
using a martingale difference central limit theorem. See McLeish (1974) for the
latter.
In general, SNP models involve a (true) Euclidean parameter vector θ0, say,

of structural parameters (or parameters of interest) and infinitely many (true)
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nuisance parameters δ0 = {δ0,i}∞i=1, say, combined as ξ0 = (θ0, δ0) = {ξ0,k}∞k=1 ∈ Ξ,
where Ξ is the infinite-dimensional parameter space involved. As noted by Shen
(1997) and others, the usual assumption for finite dimensional parametric models
that the parameter space is a compact metric space containing the true parameter
vector in its interior may not hold for Ξ in some cases. The general conditions in
Shen (1997) assume these problems away. In contrast, the approach in the current
paper will be confined to the case Ξ = X∞k=1[−ξk, ξk], where ξk is an a priori chosen
positive sequence converging to zero for k → ∞, endowed with an appropriate
metric to make Ξ compact. Moreover, to prove the asymptotic normality of the
sieve estimator of θ0 it will be assumed that ξk is chosen such that ξ

0 = (θ0, δ
0) ∈

X∞k=1(−ξk, ξk). It appears that the sieve order for which this asymptotic normality
result holds depends on the rate at which ξk → 0. Admittedly, this is more
restrictive than the general conditions considered in the SNP literature, but given
the appropriate choice of the sequence ξk the other conditions for consistency of
the sieve estimator of ξ0 and the asymptotic normality of the sieve estimator of
θ0 are weak and/or verifiable.
As to consistency, it will be shown that there is no need to assume that the

expectation of the log-likelihood function is finite for all admissible parameter
values. Next to weak standard regularity conditions it suffices that this expec-
tation is finite in the true (infinite-dimensional) parameter ξ0 and a single other
one. Moreover, it will be shown that asymptotic normality of the sieve estimators
of the Euclidean parameter vector θ0 can be established much easier, and under
verifiable primitive conditions, than by the functional derivative approach. The
basic idea is actually quite simple. Starting from the standard system of mean
value equations for the first-order conditions, this system is converted to a single
mean value equation in random function form in order to handle the increasing
dimension, by taking a weighted sum of the standard mean value equations with
weight functions an orthogonal sequence of cosine functions on the unit interval.
Then under mild regularity conditions, one side of this function equation converges
weakly to a Gaussian process, whereas the other side contains the parameter esti-
mates in deviation of their true values, times

√
N, weighted by random functions.

The nuisance parameters involved can be eliminated from this equation by using
the residuals of the projections of the weight functions corresponding to the para-
meters of interest on the space spanned by the weight functions corresponding to
the nuisance parameters. It appears that the resulting asymptotic variance matrix
is the limit of the corresponding variance matrix in the finite dimensional case.
The latter confirms similar conclusions by Newey (1994), Ai and Chen (2007),
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Ackerberg et al. (2010) and Ichimura and Lee (2010).
My focus will be on SNP models where the non-Euclidean parameter is a

density or distribution function which is modeled via an infinite series expansion,
similar to the approach of Gallant and Nychka (1987). The latter authors consider
an SNP version of Heckman’s (1979) sample selection model, where the bivariate
error distribution of the latent variable equations is modeled via a Hermite expan-
sion of the error density. Another example of an SNP model is the mixed propor-
tional hazard (MPH) model proposed by Lancaster (1979). In their seminal paper,
Elbers and Ridder (1982) have shown that under some mild conditions and nor-
malizations the MPH model is nonparametrically identified. Heckman and Singer
(1984) propose to estimate the distribution function of the unobserved heterogene-
ity variable by a discrete distribution. Bierens (2008) and Bierens and Carvalho
(2007) use orthonormal Legendre polynomials to model semi-nonparametrically
the unobserved heterogeneity distribution of interval-censored mixed proportional
hazard models and bivariate mixed proportional hazard models, respectively.
Of course, there are many more examples of SNP models. However, I will

use an SNP discrete choice index model as benchmark model to motivate and
illustrate the approach in this paper.
Any density function can be converted one-to-one via an a priori chosen map-

ping to a density function on the unit interval. See for example Bierens (2008)
and the next section. Therefore, without loss of generality we may assume that
the non-Euclidean parameter in the SNP models under review takes the form of
a density function h(u) on the unit interval. Because

p
h(u) is an element of the

Hilbert space L2(0, 1) of square-integrable functions,
p
h(u) can be represented

by a countable infinite linear combination of a complete orthogonal sequence in
L2(0, 1), similar to the approach of Gallant and Nychka (1987) for densities on
R with Hermite polynomials as orthonormal sequence. The Legendre polynomi-
als used in Bierens (2008) form such a complete orthogonal sequence in L2(0, 1).
However, as is well-known, the same applies to the well-known Fourier series and
the related cosine series. The cosine series has the advantage that it is easy to
impose smoothness conditions on h(u). Another advantage is that distribution
functions on the unit interval have a closed-form expression in terms of the sine
series. Therefore, the approach in this paper will be based on series expansions
in terms of the cosine series, although the results carry over straightforwardly to
the Fourier series.
Gallant (1981) was the first econometrician to proposed Fourier series ex-

pansions as a way to model unknown functions. Gallant’s approach is actually
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nonparametric in that no Euclidean parameters are involved. See also Eastwood
and Gallant (1991) and the references therein. However, the use of Fourier series
expansions to model unknown functions has been proposed earlier in the statistics
literature, for example in Kronmal and Tarter (1968).
The outline of the paper is as follows. In section 2 the SNP discrete choice

model will be introduced and conditions for its identification will be established.
Next to standard conditions on the covariates, identification requires a normal-
ization of the unknown distribution function involved to fix its location and scale.
This will be done by imposing two quantile restrictions. The version of this model
that will be used to motivate and illustrate the sieve estimation approach is the
SNP Logit model, which is an SNP generalization of the standard Logit model.
In section 3 it will be shown how densities on the unit interval can be repre-
sented by a series expansion in terms of the cosine series, and how smoothness
and compactness conditions can be imposed. In section 4 the SNP Logit model
will be reformulated as an infinite parameter model, in two forms: a penalized
least squares (PLS) form and a penalized maximum likelihood (PML) form, where
the role of penalty function is to enforce the aforementioned quantile restrictions.
Conditions will be set forth for the strong consistency of the sieve estimators in the
PLS case, and weak consistency in the PML case. Section 5 provides weak condi-
tions for the consistency of sieve estimators of general SNP models. In particular,
it will be shown that the usual condition that the expectation of the objective
function is finite can be relaxed. Section 6 deals with the asymptotic normality of
the sieve estimators of the Euclidean parameters, using a different approach than
in the sieve estimation literature. In section 7 it will be shown that the general
asymptotic normality conditions in section 6 apply to the SNP Logit model. The
concluding section 8 summarizes the main contribution of this paper to the sieve
estimation literature, and indicates further applications.
The proofs are given in either Appendix A (section 9), or in a separate ap-

pendix, Bierens (2011). The latter contains proofs that are not too difficult, or
are variations of published results, or are too tedious, together with a brief re-
view of some well-known Hilbert space results used in this paper. The lemmas
and theorems for which the proofs are given in Bierens (2011) are indicated by
an asterix: (∗). Appendix B (section 10) deals with convergence in probability of
projections of a random element of a Hilbert space on the space spanned by an
array of random elements in this Hilbert space, and their corresponding residuals.
These results play a key-role in the asymptotic normality proof in section 6.
Throughout the paper I will use the following notations. The indicator func-
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tion is denoted by I(.), and N and N0 denote the sets of positive and nonnegative
integers, respectively. The partial derivative to a parameter with index k will be
denoted by ∇k, and ∇k,m denotes the second partial derivatives to parameters
with indices k and m.

2. The SNP discrete choice index model

2.1. The benchmark model

As benchmark model, I will focus on the SNP discrete choice index model

Pr [Y = 1|X] = F0 (α0 + β00X) (2.1)

where Y ∈ {0, 1}, X ∈ Rq, q ≥ 1, is a (vector) of observable covariates, F0(x) is
an unknown absolutely continuous distribution function on R with density f0(x),
and α0 ∈ R and β0 ∈ Rq are parameters to be estimated. Moreover, similar to
the Logit and Probit cases it will be assumed that

f0(x) is continuous and positive on R. (2.2)

Given an a priori chosen absolutely continuous distribution function G(x) with
support R we can write model (2.1) as

Pr [Y = 1|X] = H0 (G (α0 + β00X)) = H0 (G ((1,X
0)θ0)) , (2.3)

where θ0 = (α0, β00)
0 ∈ Rp, p = q+1, and H0(u) is a distribution function on [0, 1],

i.e., H0(u) = F0(G−1(u)), with G−1 the inverse of G. The corresponding density
takes the form

h0(u) = f0(G
−1(u))/g(G−1(u)), (2.4)

where g is the density function of G.
Note that by (2.4) and condition (2.2), h0(u) is continuous and positive on

(0, 1). Moreover, if
lim
|x|→∞

f0(x)/g(x) <∞ (2.5)

then h0(0) < ∞ and h0(1) < ∞, so that then h0(u) is uniformly continuous on
[0, 1].
In general, the role of the a priory chosen distribution function G is three-fold:

1. G specifies the support of the unknown distribution function F0 in the SNP
model;
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2. G maps one-to-one the parameter space of absolutely continuous candidate
distributions for F0 onto a space of density functions on the unit interval, which
enables us to develop a unified inference approach for a wide range of SNP models;
3. G serves as an initial guess for F0(x) = H0(G(x)). If the guess is right then
H0(u) = u. A related interpretation is that F0 = G represents a standard para-
metric model of which the SNP model is a generalization.
As to the latter, let for example G(x) be the logistic distribution function,

G(x) = (1 + exp(−x))−1 . (2.6)

Then the standard Logit model corresponds to H0(u) = u, and the general SNP
discrete choice index model (2.3) corresponds to

h0(u) =
f0(ln(u)− ln(1− u))

u(1− u) , (2.7)

as follows straightforwardly from (2.4) and the fact that in the case (2.6), g(x) =
G(x)(1−G(x)) and G−1(u) = ln(u/(1− u)). Thus, in the case (2.6) model (2.3)
becomes a generalization of the standard Logit model. However, the choice of
(2.6) does not exclude other standard parametric discrete choice models. For
example, with G chosen as (2.6), the standard Probit model corresponds to

h0(u) =
exp(−(ln(u)− ln(1− u)))2/2)

u(1− u)√2π .

2.2. Identification

As pointed out by Manski (1988), model (2.1) is not identified without further
conditions. One of the reasons is that for any pair of constants µ and σ > 0 we can
find a distribution function H(u) on [0, 1] such that H0(G(x)) = H(G(µ+ σ.x)),
namely H(u) = H0(G((G−1(u) − µ)/σ)), so that then Pr [Y = 1|X] = H(G(µ +
σα0 + σβ00X)) = H0(G(α0 + β00X)). A possible solution is to set α0 = 0 and
normalize one of the components of β0 to 1, as in Manski (1988), but then we
loose the desirable property that the case F0 = G corresponds to the uniform
distribution H0(u) = u.
Alternatively, we can achieve identification by imposing two quantile restric-

tions, for example

H(u1) = H0(u1) = u1, H(u2) = H0(u2) = u2, (2.8)
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for an a priori chosen pair u1 < u2 in (0, 1), together with some regularity con-
ditions on the distribution of X. The reason for choosing the quantiles and the
corresponding values of H and H0 the same is to accommodate the uniform dis-
tribution. Then similar to the identification conditions for the interval censored
mixed proportional hazard model considered in Bierens (2008) it can be shown
that the SNP discrete choice index model (2.3) is identified under the following
conditions.

Assumption 2.1. Let X ∈ Rq be the vector of covariates in the SNP discrete
choice model (2.3). The following conditions hold.
(a) E [X 0X] <∞.
(b) If q = 1 then the distribution of X has support R, and β0 6= 0.
(c) If q ≥ 2 then we can partition X as X = (X1, X

0
2)
0, with X2 ∈ Rq−1, such

that the conditional distribution of X1 given X2 has support R. Moreover, the
coefficient of X1 is nonzero and the variance matrix of X2 is nonsingular.
(d) The distribution function H0 in (2.3) is absolutely continuous with density h0
satisfying h0(u) > 0 on (0, 1).
(e) The distribution function H0 is confined to a space of absolutely continuous
distribution functions H on [0, 1] satisfying the quantile restrictions H(u1) =
u1, H(u2) = u2 for an a priori chosen pair u1 6= u2 in (0, 1).

Thus,

Lemma 2.1.(∗) Under Assumption 2.1, H0(G(α0 + β00X)) = H(G(α+ β0X)) a.s.
implies α = α0, β = β0 and H ≡ H0.

2.3. The SNP Logit model

From now onwards it will be assumed that the logistic distribution (2.6) has been
chosen as initial guess G(x). The corresponding SNP model (2.3) will be referred
to as the SNP Logit model. Moreover, in addition to part (d) of Assumption 2.1
I will adopt condition (2.2) together with tail condition (2.5), so that

Assumption 2.2. The density h0(u) in (2.7) is uniformly continuous on [0, 1].

I will propose to estimate the Euclidean parameter vector θ0 and the distrib-
ution function H0 consistently by a penalized sieve least squares method as well
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as by a penalized sieve maximum likelihood method, on the basis of a random
sample of size N from (Y,X), where the role of the penalty function involved is
to enforce the quantile restriction in part (e) of Assumption 2.1. In the penalized
maximum likelihood case, however, we need to augment Assumption 2.2 with the
conditions that

Assumption 2.3. h0(0) > 0 and h0(1) > 0,

in order to deal with the effect of the logs in the log-likelihood function.
Note that by (2.4), Assumption 2.3 implies lim|x|→∞ f0(x)/g(x) > 0, hence by

(2.5), Assumptions 2.2 and 2.3 together require to choose G and its density g such
that

lim
|x|→∞

f0(x)/g(x) ∈ (0,∞). (2.9)

In particular, in the logistic case (2.6) the tail condition (2.9) reads

lim
|x|→∞

(ln(f0(x))− |x|) ∈ R, (2.10)

which, admittedly, is restrictive. On the other hand, in the SNP Logit case f0(x)
can be estimated consistently via penalized sieve least squares without requiring
Assumptions 2.2 and 2.3 (see the remark following Theorem 5.1), so that the tail
condition (2.10) is empirically verifiable. Moreover, if condition (2.10) does not
seem to hold the plot of the estimate of f0(x) can be used to select a distribution
function G for which tail condition (2.9) is plausible.

3. Series expansions of densities on the unit interval

3.1. Cosine series representation

In Bierens (2008) I have proposed a series representation of a density h(u) on [0, 1]
based on orthonormal Legendre polynomials, because these polynomials form a
complete orthonormal sequence in the Hilbert space L2(0, 1). However, the main
problem with this representation is that the Legendre polynomials have to be
computed recursively so that h(u) has no closed form expression, and neither
has the corresponding distribution function H(u) =

R u
0
h(v)dv. The same applies

to the density and distribution function representations on the basis of Hermite
polynomials advocated by Gallant and Nychka (1987).
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The sequence of Legendre polynomials is not the only complete orthonormal
sequence in L2(0, 1). As is well-known, the Fourier series ρ0(u) ≡ 1, ρk(u) =√
2 sin(2kπu) if k ∈ N is odd, ρk(u) =

√
2 cos (2kπu) if k ∈ N is even, is complete

in L2(0, 1), and the same applies to the related cosine series ρ0(u) ≡ 1, ρk(u) =√
2 cos (kπu) for k ∈ N. See for example Kronmal and Tarter (1968) and Bierens

(2011) for the latter. The advantage of using the cosine series instead of the
Legendre polynomials is that then the series representations of h(u) and H(u)
have closed forms. In particular, it follows similar to Bierens (2008) that

Lemma 3.1.(∗) For an arbitrary density function h(u) on [0, 1] with corresponding
distribution function H(u) there exist possibly uncountable many sequences δ =
{δm}∞m=1 satisfying

P∞
m=1 δ

2
m <∞ such that almost everywhere (a.e.) on (0, 1),

h(u) = h(u|δ) =
¡
1 +

P∞
k=1 δk

√
2 cos (kπu)

¢2
1 +

P∞
m=1 δ

2
m

, (3.1)

H(u) = H(u|δ)

= u+
1

1 +
P∞

i=1 δ
2
i

"
2
√
2
∞X
k=1

δk
sin (kπu)

kπ
+

∞X
k=1

δ2k
sin (2kπu)

2kπ
(3.2)

+2
∞X
k=2

k−1X
m=1

δkδm
sin ((k +m)πu)

(k +m) π
+ 2

∞X
k=2

k−1X
m=1

δkδm
sin ((k −m)πu)
(k −m)π

#
.

The result for H(u) follows straightforwardly from (3.1) and the well-known sine-
cosine formulas. The proof of the ”a.e.” part is standard and will therefore be
given in Bierens (2011).
However, the lack of uniqueness of the δk’s is not too serious a problem because

for most applications, including the SNP discrete choice model under review, the
density h(u) involved satisfies the conditions of the following lemma.

Lemma 3.2. If a density h(u) on [0, 1] is continuous and positive on (0, 1) then
it has a unique series representation (3.1), with

δk =

R 1
0

√
2 cos (kπu)

p
h(u)duR 1

0

p
h(u)du

, k ∈ N. (3.3)

Proof : Appendix A.
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Similar to Bierens (2008) the condition
P∞

k=1 δ
2
k < ∞ can be imposed by

restriction the space of densities to the following space D (0, 1).

Definition 3.1. Given an a priori chosen positive sequence {δk}∞k=1 satisfyingP∞
k=1 δ

2

k <∞, let ∆ = X∞m=1[−δm, δm] and D (0, 1) = {h(u|δ) : δ ∈ ∆}.

It has been shown in Bierens (2008) that the space ∆ endowed with the metric
||δ1 − δ2|| =

pP∞
m=1(δ1,m − δ2,m)2, where δi = {δi,m}∞m=1 for i = 1, 2, is compact,

and so is the space D (0, 1) endowed with the L1 metric d(h1, h2) =
R 1
0
|h1(u) −

h2(u)|du.
Given that the sequence {δm}∞m=1 is chosen such that h0 ∈ D (0, 1) , we can use

either the space D (0, 1) or the space ∆ as the non-Euclidean parameter space.
Along the lines in Bierens (2008) it can be shown that the Euclidean parameters
θ0 = (α0, β

0
0)
0 together with the distribution function H0 in (2.3) can be estimated

consistently by a penalized nonlinear least squares sieve approach.
However, in this paper I want to focus on the asymptotic normality of the sieve

estimator of θ0. As will be shown below, the latter requires that the densities (3.1)
are differentiable in u as well as twice differentiable in the δk’s. Therefore, we need
to impose smoothness conditions on (3.1). How to do that will be shown in the
next subsection.

3.2. Smoothness

As argued before, under certain conditions and the appropriate choice of the ini-
tial guess G we may assume that the true density h0(u) corresponding to an
SNP model is uniformly continuous on [0, 1]. C.f. Assumption 2.2. A suffi-
cient condition for this is that the δk’s in the representation (3.1) of h0(u) satisfyP∞

k=1 |δk| <∞, as is easy to verify. Moreover, if the true density h0(u) in an SNP
model is ` times continuously differentiable on (0, 1) we can impose this condi-
tion by restricting the δk’s in the representation (3.1) of h0(u) to those for whichP∞

k=1 k
`|δk| <∞. Again, this condition can be imposed by confining h0(u) to the

following space D` (0, 1) .

Definition 3.2. Given an ` ∈ N0 and an a priori chosen positive sequence
{δ`,m}∞m=1 satisfying

P∞
m=1m

`δ`,m <∞, let ∆` = X
∞
m=1[−δ`,m, δ`,m] and D` (0, 1) =

{h(u|δ) : δ ∈ ∆`}.

11



Thus,

Lemma 3.3. For ` = 0 the densities in D0 (0, 1) are uniformly continuous
on [0, 1], and for ` ∈ N, h ∈ D` (0, 1) , the derivatives h(k)(u) = dkh(u)/(du)k,
k = 1, 2, ..., `, are uniformly continuous on [0, 1].

Moreover, we have:

Lemma 3.4.(∗) Let δ = {δm}∞m=1 ∈ ∆`, δi = {δi,m}∞m=1 ∈ ∆`, i = 1, 2 More-
over, denote for k = 1, ..., `, ||δ1 − δ2||k =

P∞
m=1m

k|δ1,m − δ2,m|, h(k)(u|δ) =
dkh(u|δ)/(du)k, and let h(0)(u|δ) = h(u|δ), where the latter is defined by (3.1).
Furthermore, let Ck ∈ (0,∞) be a generic constant. Then for k = 0, 1, ..., ` and
m,m1,m2 ∈ N,

sup
δ∈∆`

sup
0≤u≤1

¯̄
h(k)(u|δ)¯̄ < Ck,

sup
0≤u≤1

¯̄
h(k)(u|δ1)− h(k)(u|δ2)

¯̄
< Ck.||δ1 − δ2||k,

sup
δ∈∆`

sup
0≤u≤1

¯̄∇mh(k)(u|δ)¯̄ < Ck.mk,

sup
0≤u≤1

¯̄∇mh(k)(u|δ1)−∇mh(k)(u|δ2)¯̄ < Ck.mk.||δ1 − δ2||k,

sup
δ∈∆`

sup
0≤u≤1

¯̄∇m1,m2h
(k)(u|δ)¯̄ < Ck.mk

1m
k
2,

sup
0≤u≤1

¯̄∇m1,m2h
(k)(u|δ1)−∇m1,m2h

(k)(u|δ2)
¯̄
< Ck.m

k
1m

k
2.||δ1 − δ2||k.

This lemma plays a key-role in proving asymptotic normality of the sieve
estimator of the Euclidean parameter vector θ0 in the SNP Logit model.

3.3. Compactness

Note that similar to Lemma A.1 in Bierens (2008),

Lemma 3.5.(∗) The space ∆` endowed with the metric ||δ1−δ2||` =
P∞

m=1m
`|δ1,m−

δ2,m|, where δi = {δi,m}∞m=1 for i = 1, 2, is compact.

Moreover, using the same notation as in Lemma 3.4 it follows that
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Lemma 3.6.The space D` (0, 1) endowed with the Sobolev1 metric d`(h1, h2) =
max0≤m≤` sup0≤u≤1 |h(m)1 (u)− h(m)2 (u)| is compact.

This result follows from Lemma 3.5 and the fact that for each pair h1, h2 ∈
D`(0, 1) with corresponding sequences δ1 = {δ1,m}∞m=1 and δ2 = {δ2,m}∞m=1 we
have d`(h1, h2) = O (||δ1 − δ2||`).

4. Reformulation of the SNP Logit model

4.1. The parameter space

The space ∆` for some ` ∈ N0, endowed with the metric ||δ1 − δ2||` in Lemma
3.5 will now be used as the parameter space for the non-Euclidean parameter(s)
in the SNP Logit model. Also the Euclidean parameter vector θ0 = (α0, β

0
0) is

assumed to be confined to a compact parameter space Θ ⊂ Rp. In particular, for
notational convenience it will be assumed that Θ is a hypercube. Thus,

Assumption 4.1. The SNP Logit model is parametrized as Pr [Y = 1|X] =
H(G((1, X 0)θ0)|δ0), where θ0 = (α0,β

0
0)
0 ∈ Θ = Xpi=1[−θi, θi], δ0 ∈ ∆` for some ` ∈

N0, and H(u|δ) is given in (3.2).

Next, denote for θ = (θ1, ..., θp) ∈ Θ and δ = {δk}∞k=1 ∈ ∆`,

ξ = (θ, δ) = {ξk}∞k=1, where ξk =
½

θk for k = 1, ..., p,
δk−p for k ≥ p+ 1,

ξ0 = (θ0, δ0) = {ξ0,k}∞k=1
and let

Ξ` = X∞k=1[−ξ`,k, ξ`,k], where ξ`,k =
½

θk for k = 1, ..., p,
δ`,k−p for k ≥ p+ 1, (4.1)

||ξ1 − ξ2||` =
∞X
m=1

m`|ξ1,m − ξ2,m|, where ξi = {ξi,m}∞m=1 for i = 1, 2. (4.2)

As to the metric on Ξ`, we may combine the Euclidean metric on Θ with the
metric ||δ1− δ2||` on ∆`, for example the metric ||θ1− θ1||+ ||δ1− δ2||`. However,

1See for example Adams and Fournier (2003).
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because (4.1) implies
P∞

m=1m
`ξ`,m < ∞, we may without loss of generality en-

dow Ξ` with the metric (4.2). This metric is convenient in deriving asymptotic
normality results, as we will see below.
Note that similar to Lemma 3.5, Ξ` is compact. Moreover, it is not hard to

verify that

Lemma 4.1.(∗) H(G((1,X 0)θ)|δ) is a.s. continuous in ξ = (θ, δ) ∈ Ξ`.

4.2. The SNP Logit model in penalized least squares form

Denote
f
LS
(Z, ξ) = (Y −H(G((1, X 0)θ)|δ))2 +Π(δ), (4.3)

where Z = (Y,X 0)0, ξ = (θ, δ), and Π(δ) is a penalty function to enforce the
quantile restrictions (2.8). In particular, I will use

Π(δ) = (u1 −H(u1|δ))4 + (u2 −H(u2|δ))4 (4.4)

for given pair u1 6= u2 in (0, 1). The reason for the power 4 is that then the
penalty function does not affect the asymptotic normality of the sieve estimator
of θ0, as will become clear below.
Note that by Lemma 3.4, Π(δ) is uniformly continuous on ∆`, hence by

Lemma 4.1, f
LS
(Z, ξ) is a.s. continuous on Ξ`. Moreover, because obviously

0 ≤ f
LS
(Z, ξ) ≤ 33, it follows that

E

∙
sup
ξ∈Ξ`

|f
LS
(Z, ξ)|

¸
<∞, (4.5)

hence by the bounded convergence theorem and the compactness of Ξ`, E[fLS(Z, ξ)]
is uniformly continuous on Ξ`. Therefore

ξ0 = argmin
ξ∈Ξ`

E[f
LS
(Z, ξ)] ∈ Ξ`,

which by Assumption 2.1 and Lemma 3.3 is unique.
In this case the parameter ξ0 can be estimated strongly consistent by sieve

estimation, on the basis of a random sample Z1, ..., ZN from the distribution of
Z = (Y,X 0)0, as follows. Denote

Ξ`,n =
¡
Xnk=1[−ξ`,k, ξ`,k]

¢× ¡X∞k=n+1{0}¢ ,
14



which is a sequence of sieve spaces of Ξ`, and note that Ξ` = ∪∞n=1Ξ`,n, where the
bar denotes the closure. The latter follows from the fact that for any ξ ∈ Ξ` there
exists a sequence ξn ∈ Ξ`,n such that limn→∞ ||ξn − ξ||` = 0. Then the following
result holds.

Theorem 4.1. Let nN be an arbitrary subsequence of N satisfying limN→∞ nN =
∞, and let bξn = argminξ∈Ξ`,n 1

N

PN
j=1 fLS(Zj, ξ). Under Assumptions 2.1 and 4.1,

||bξnN − ξ0||` a.s.→ 0 for any ` ∈ N0.

This result will be proved in more general terms in the next section. As will
appear, (4.5) is a crucial condition for this result.

4.3. The SNP Logit model in penalized maximum likelihood form

Using the same notation as before, the penalized log-likelihood function of the
SNP Logit model takes the form

f
ML
(Z, ξ) = Y. ln (H(G((1, X 0)θ)|δ))

+(1− Y ). ln (1−H(G((1, X 0)θ)|δ))−Π(δ), (4.6)

where Π(δ) is the penalty function (4.4). It is a standard maximum likeli-
hood exercise to verify that E[f

ML
(Z, ξ)|X] ≤ E[f

ML
(Z, ξ0)|X] a.s. and that

E[f
ML
(Z, ξ)|X] = E[f

ML
(Z, ξ0)|X] a.s. if and only if Π(δ) = 0 and H(G((1, X 0)θ)

|δ) = H(G((1,X 0)θ0)|δ0) a.s. As we have seen in Lemma 2.1, under Assumption
2.1 the latter implies θ = θ0 and δ = δ0. Thus,

ξ0 = argmax
ξ∈Ξ`

E[f
ML
(Z, ξ)]

is unique.
However, due to the logs it is possible that E[f

ML
(Z, ξ)] = −∞ for some ξ. For

example, suppose thatX is univariate and is distributed as G, and Pr[Y = 1|X] =
G(X), so that θ0 = (0, 1)0 and h0(u) = 1. Next, let ξ∗ = (θ0, δ∗), where δ∗ is such
thatH(u|δ∗) = u. exp(1−u−2). Because U = G(X) is uniformly [0, 1] distributed it
follows that E[f

ML
(Z, ξ∗)] =

R 1
0
u. ln (H(u|δ∗)) du+

R 1
0
(1−u) ln (1−H(u|δ∗)) du−

Π(δ∗) = −∞, where the latter is due to
R 1
0
u. ln (H(u|δ∗)) du =

R 1
0
u. ln (u) du +

1
2
− R 1

0
u−1du = −∞.

Nevertheless, it is possible to get around this problem, but at a price: We
now need Assumption 2.3, and we have to trade in strong consistency for weak
consistency.
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Theorem 4.2. Let nN be an arbitrary subsequence of N satisfying limN→∞ nN =
∞, and let bξnN = argmaxξ∈Ξ`,nN fML

(Zj, ξ). Under Assumptions 2.1, 2.3 and 4.1,

plimN→∞||bξnN − ξ0||` = 0 for any ` ∈ N0.

Again, this result will be proved in more general terms in the next section. The
specialization of the general conditions involved to the case under review employs
the fact that

Lemma 4.2.(∗) Under the conditions of Theorem 4.2, E[f
ML
(Z, ξ)] is continuous

in ξ0.

5. Consistency of sieve estimators

5.1. General SNP model

More generally,

Assumption 5.1. Consider an SNP model characterized by a real valued random
function f(Z, ξ) on Ξ, where Ξ is a (possibly non-Euclidean) compact metric space
with metric d(ξ1, ξ2), and Z is a random vector representing the data generating
process. The support of Z is contained in a open subset Z of a Euclidean space.
The data set involved is {Zj}Nj=1, where the Zj’s are independent replications of
Z, defined on a common probability space {Ω,F , P}. Moreover, for each z ∈ Z,
f(z, ξ) is continuous in ξ ∈ Ξ, and for each ξ ∈ Ξ, f(z, ξ) is a Borel measurable
function on Z.

Also, suppose that

Assumption 5.2. In addition to the conditions in Assumption 5.1,
(a) There exists an increasing sequence {Ξn}∞n=1 of compact subspaces of Ξ that
is dense in Ξ, i.e., Ξ = ∪∞n=1Ξn;
(b) Each subspace Ξn corresponds one-to-one to a compact subset Σn of a Euclid-
ean space;
(c) supξ∈Ξ f(Z, ξ) ≤ 0 a.s.;
(d) The parameter of interest, ξ0 = argmaxξ∈ΞE[f(Z, ξ)], is a unique element of
Ξ.
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These conditions hold for the SNP Logit case in penalized least squares form,
with f(Z, ξ) = −f

LS
(Z, ξ), as well as for the SNP Logit case in penalized maximum

likelihood form, with f(Z, ξ) = fML(Z, ξ), where Ξ = Ξ`, Ξn = Ξ`,n, Σn =
Xnk=1[−ξ`,k, ξ`,k] and d(ξ1, ξ2) = ||ξ1 − ξ2||`, for any ` ∈ N0.
Condition (c) may be replaced by supξ∈Ξ f(Z, ξ) < ∞ a.s. because then As-

sumptions 5.1 and 5.2 still hold for f0(Z, ξ) = f(Z, ξ)− supξ∗∈Ξ f(Z, ξ∗).
The roles of parts (a) and (b) of Assumption 5.2 are two-fold. First, these

conditions guarantee that, with

bQN(ξ) = 1

N

NX
j=1

f(Zj, ξ), (5.1)

the computation of the sieve estimator

bξn = argmax
ξ∈Ξn

bQN(ξ) (5.2)

is feasible. Second, they enable us to generalize Jennrich’s (1969) Lemma 2:

Lemma 5.1.(∗) Under Assumption 5.1 and parts (a) and (b) of Assumption 5.2,
supξ∈Ξ f(z, ξ) and infξ∈Ξ f(z, ξ) are Borel measurable functions on Z. Moreover,
let ξ(z) = argmaxξ∈Ξ f(z, ξ), ξ(z) = argminξ∈Ξ f(z, ξ).2 There exist versions of
ξ(z) and ξ(z) such that for any continuous real function Φ on Ξ, Φ(ξ(z)) and
Φ(ξ(z)) are Borel measurable functions on Z.

An example of such a continuous function Φ is the metric d(ξ, ξ0) with ξ0 ∈ Ξ
fixed and ξ variable, because by the triangular inequality |d(ξ1, ξ0)− d(ξ2, ξ0)| ≤
d(ξ1, ξ2). Hence, d(ξ(z), ξ0) is Borel measurable and therefore d(ξ(Z), ξ0) is a well-
defined random variable. The same applies to d(bξn, ξ0).
5.2. Strong consistency

Recall that in the case of the SNP Logit model in least squares form we have

Assumption 5.3. E[supξ∈Ξ |f(Z, ξ)|] <∞.

2Note that ξ(z) and/or ξ(z) may not be unique.
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This assumption guarantees, by the dominated convergence theorem, that

Q(ξ) = E[f(Z, ξ)] (5.3)

is continuous on Ξ, so that by the compactness of Ξ, ξ0 ∈ Ξ.
The core of the strong consistency proof for the sieve estimator of ξ0 is the

following generalization of the uniform strong law of large numbers (USLLN) of
Jennrich (1969):

Lemma 5.2. Under Assumptions 5.1 and 5.3, supξ∈Ξ
¯̄̄ bQN(ξ)−Q(ξ)¯̄̄ a.s.→ 03 as

N →∞, where bQN(ξ) and Q(ξ) are defined by (5.1) and (5.3), respectively.

Jennrich (1969) proved this result for the case that Ξ is a compact subset of
a Euclidean space. However, inspecting the more detailed proof of Jennrich’s
USLLN in Bierens (2004, Appendix to Chapter 6), and applying Lemma 5.1, it
follows straightforwardly that Jennrich’s result carries over to general compact
metric spaces.
Using Lemma 5.2 it is easy to prove the following standard strong consistency

result for sieve estimators, similar to White and Wooldridge (1991).

Theorem 5.1.(∗) Under Assumptions 5.1-5.3, d(bξnN , ξ0) a.s.→ 0, where bξn is de-
fined by (5.2) and nN is an arbitrary subsequence of the sample size N satisfying
limN→∞ nN =∞.

Remark. Theorem 4.1 is now a straightforward corollary of Theorem 5.1. How-
ever, it is not hard to verify from the conditions of Theorem 5.1 that Theo-
rem 4.1 carries over if we replace Ξ` by Ξ = Θ × D(0, 1), where D(0, 1) is
defined in Definition 3.1, the sieve spaces Ξ`,n by Ξn = Θ × Dn(0, 1) where
Dn(0, 1) = {h(u) = h(u|δ) : δ ∈ ∆n} with ∆n =

¡
Xnm=1[−δm, δm]

¢×¡X∞m=n+1{0}¢ ,
and the metric ||ξ1−ξ2||` by the metric ||θ1−θ2||+

R 1
0
|h1(u)−h2(u)|du, for example.

5.3. Weak consistency under weak conditions

Suppose that in instead of Assumption 5.3 the following conditions hold.

3Note that by Lemma 5.1 the supremum involved is a well-defined random variable.

18



Assumption 5.4.
(a) There exists an element ξ ∈ Ξ, ξ 6= ξ0, such that E[f(Z, ξ)] > −∞;
(b) E[f(Z, ξ)] is continuous in ξ0 on the space Ξ = {ξ ∈ Ξ : E[f(Z, ξ)] ≥
E[f(Z, ξ)]}, i.e., limε↓0 infξ∈Ξ, d(ξ,ξ0)<εE[f(Z, ξ)] = E[f(Z, ξ0)].

In the case (4.6) let for example ξ = (0, 0, 0, ...), as then f(Z, ξ) = − ln(2).
Moreover, condition (b) follows from the conditions of Lemma 4.2.
The following special case of the uniform weak law of large numbers plays a

key-role in proving weak consistency of the sieve estimator involved.

Lemma 5.3.(∗) For K > 0, let bQK,N(ξ) = 1
N

PN
j=1max(f(Zj, ξ),−K) and QK(ξ) =

E[max(f(Z, ξ),−K)]. Under Assumption 5.1 and part (c) of Assumption 5.2 there
exists a sequence KN converging to infinity with N such that plimN→∞ supξ∈Ξ
| bQKN ,N(ξ)−QKN

(ξ)]| = 0.

This result is part of the proof of Theorem 10 in Bierens (2008). A slightly
improved version of the proof of Lemma 5.3 is given in Bierens (2011).
Lemma 5.3 will now be used to prove that

Theorem 5.2.Under Assumptions 5.1, 5.2 and 5.4, plimN→∞ d(bξnN , ξ0) = 0,

where bξn is defined by (5.2) and nN is an arbitrary subsequence of the sample size
N satisfying limN→∞ nN =∞.

Proof : Appendix A.

Remark 1. Theorem 5.2 is a substantial improvement of Theorems 10 and 11 in
Bierens (2008). Only Lemma 5.3 is taken from the proof of Theorem 10 in Bierens
(2008); the rest of the proof of Theorem 5.2 is new. The results in Bierens (2008)
were based on the assumption that for all ξ ∈ Ξ, E[|f(Z, ξ)|] <∞. However, this
condition may not hold for SNP models in log-likelihood form.

Remark 2. Theorem 5.2 is (somewhat) related to Theorem 5.14 in Van der Vaart
(1998), which also allows for E[f(Z, ξ)] = −∞ for some values of ξ. However,
the key condition in the latter theorem is that, in our notation, bQN(bξnN ) ≥bQN(ξ0)− op(1), which may not hold for sieve estimators. Moreover, this theorem
also assumes compactness of the parameter space.
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6. Asymptotic normality

6.1. Introduction

As mentioned in the introduction, the conditions for asymptotic normality of sieve
estimators proposed in the literature are based on high-level and difficult to verify
assumptions. Therefore, in empirical applications it is usually assumed that the
SNP model involved represents merely a flexible functional form. See for example
Gabler et al. (1993). This is not unreasonable an assumption, as all econometric
and statistical models are approximations of data-generating processes. In our
case this assumption amounts to the condition that Ξ = Ξn for some unknown n,
so that there exists a smallest n such that Ξ = Ξn. The order n can be estimated
consistently using an information criterion similar to the well-known Hannan-
Quinn (1979) and Schwarz (1978) information criteria for the dimension of time
series models. Given an estimator bnN of n satisfying limN→∞ Pr[bnN = n] = 1,
one may treat the estimator bnN as the true value. The model then becomes fully
parametric, and therefore asymptotic normality can be derived in a standard way,
provided that the SNP parameters involved are unique. This is the approach
followed by Bierens and Carvalho (2007), for example.
In this section I will propose an alternative asymptotic normality proof on

the basis of the standard mean value approach for the first-order conditions. The
problem of the expanding dimension of the mean value equations will be solved by
converting them to random functions. Asymptotic normality can then be derived
from the functional central limit theorem, and the parameters of interest can be
singled out by using projection residuals.

6.2. The model

Consider again the model in Assumptions 5.1 and 5.2, where now

Assumption 6.1. In addition to Assumptions 5.1 and 5.2,
(a) Ξ = X∞k=1[−ξk, ξk], with ξk a given sequence of positive numbers satisfyingP∞

k=1 k
`ξk <∞ for some natural number ` ≥ 1.

(b) The space Ξ is endowed with norm ||ξ||` =
P∞

k=1 k
`|ξk|, ξ = (ξ1, ξ2, ξ3, ....) ∈ Ξ,

and associated metric ||ξ1−ξ2||`, so that in Assumption 5.1, d(ξ1, ξ2) = ||ξ1−ξ2||`;
(c) The sieve spaces involved are of the form Ξn =

¡
Xnk=1[−ξk, ξk]

¢×¡X∞k=n+1{0}¢ .
(d) f(Z, ξ) is a.s. twice continuously differentiable in the components of ξ =
(ξ1, ξ2, ξ3, ....) ∈ Ξ;
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(e) ξ0 = (ξ0,1, ξ0,2, ξ0,3, ....) ∈ ΞInt = X∞k=1(−ξk, ξk);

In the SNP Logit cases (4.3) and (4.6) the non-Euclidean parameters corre-
spond to the parameter sequence δ = {δm}∞m=1 in H(G((1,X 0)θ)|δ) and Π(δ). It is
not hard to verify that in these cases the second derivatives ∂2f(Z, ξ)/(∂ξi1∂ξi2) in-
volveG((1, X 0)θ), H(u|δ), h(u|δ), and derivatives of the type ∂h(u|δ)/∂δk, ∂2h(u|δ)
/(∂δk∂δm) and ∂h(u|δ)/∂u. In view of the latter and Lemma 3.4, the choice ` = 1
suffices. However, to accommodate SNP models for which h(u|δ) enters the ex-
pression for f(Z, ξ) directly the asymptotic normality results below will be derived
for a general ` ≥ 1.
As before, let bξn = (bξn,1,bξn,2,bξn,3, ....,bξn,n, 0, 0, 0, ....) = argmaxξ∈Ξ`,n 1

N

PN
j=1

f(Zj, ξ) be the sieve estimator. It will be assumed that the conditions of Theorem
5.1 or 5.2 hold, so that the sieve estimator bξn is weakly consistent.
Assumption 6.2. For any subsequence n of the sample size N satisfying n→∞
as N →∞, plimN→∞||bξn − ξ0||` = 0.

6.3. First-order conditions and mean value expansion

Denote fj(ξ) = f(Zj, ξ) and ξ0n = (ξ0,1, ξ0,2, ξ0,3, ...., ξ0,n, 0, 0, 0, ....). It follows from
the mean value theorem that there exist a sequence λk ∈ [0, 1] of random variables
(depending on n and N as well) such that for k = 1, ..., n,

1√
N

NX
j=1

5kfj(bξn) + 1√
N

NX
j=1

¡5kfj(ξ
0)−5kfj(ξ

0
n)
¢

=
1√
N

NX
j=1

5kfj(ξ
0) (6.1)

+
nX

m=1

Ã
1

N

NX
j=1

5k,mfj(ξ
0
n + λk(bξn − ξ0n))

!√
N
³bξn,m − ξ0,m

´
In the case that n is fixed, i.e., ξ0n = ξ0, it follows from part (e) of Assump-

tion 6.1 and Assumption 6.2 that limN→∞ Pr[bξn ∈ Xnk=1(−ξk, ξk)] = 1, so that
limN→∞Pr[

PN
j=15kfj(bξn) = 0 for k = 1, ..., n] = 1. However, this may not be

true for n→∞. Nevertheless,
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Lemma 6.1.(∗) Under Assumptions 6.1 and 6.2 there exists a sub-sequence Kn

of n, i.e., Kn ≤ n, limn→∞Kn = ∞, such that limN→∞ Pr[
PN

j=15kfj(bξn) =
0 for k = 1, ...,Kn] = 1.

Of course, the subsequence Kn is unknown, but that does not matter for the
asymptotic normality results to be derived below.
In order to convert (6.1) to a single equation in random function form, denote

cWn(u) =
KnX
k=1

Ã
1√
N

NX
j=1

5kfj(bξn)
!
ηk(u) (6.2)

bVn(u) =
KnX
k=1

Ã
1√
N

NX
j=1

¡5kfj(ξ
0)−5kfj(ξ

0
n)
¢!

ηk(u) (6.3)

bZn(u) =
KnX
k=1

Ã
1√
N

NX
j=1

5kfj(ξ
0)

!
ηk(u) (6.4)

bbm,n(u) = −
KnX
k=1

Ã
1

N

NX
j=1

5k,mfj(ξ
0
n + λk(bξn − ξ0n))

!
ηk(u) (6.5)

where Kn is the subsequence in Lemma 6.1 and the ηk(u)’s are orthogonal weight
functions on [0, 1], i.e.,

R 1
0
ηk(u)ηm(u)du = 0 for k 6= m. As we will see, the type

of ηk(u) is not important, but we need to require that σk =
R 1
0
ηk(u)

2du converges
fast enough to zero as k →∞. Therefore, I will choose

ηk(u) = 2
−k√2 cos(kπu). (6.6)

We can now write the system of equations (6.1) as

nX
m=1

bbm,n(u)√N ³bξn,m − ξ0,m
´
= bZn(u)−cWn(u)− bVn(u) (6.7)

First, note that by (6.2) and Lemma 6.1,

sup
0≤u≤1

|cWn(u)| = op(1). (6.8)

Next, observe from (6.6) and (6.3) that E[sup0≤u≤1 |bVn(u)|] ≤ √2NPn
k=1 2

−k

E[| 5k f1(ξ
0)−5kf1(ξ

0
n)|], which converges to zero if
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Assumption 6.3. There exists a nonnegative integer `0 ≤ ` such that the fol-
lowing local Lipschitz conditions hold for all k ∈ N: E[| 5k f1(ξ

0)−5kf1(ξ
0
n)|] ≤

Mk.||ξ0 − ξ0n||`0, where
P∞

k=1 2
−kMk < ∞, and the sieve order n = nN is chosen

such that limN→∞
√
N
P∞

m=nN+1
m`0ξm = 0.

Thus under Assumption 6.3,

sup
0≤u≤1

|bVn(u)| = op(1). (6.9)

Equation (6.7) now reads
Pn

m=1
bbm,n(u)√N(bξn,m − ξ0,m) = bZn(u) + op(1), where

the op(1) term is uniform in u ∈ [0, 1].

6.4. Weak convergence

The next step is to set forth conditions such that bZn converges weakly to a zero
mean Gaussian process Z, as follows. Suppose that

Assumption 6.4. For all k ∈ N, E[5kf1(ξ
0)] = 0.

More primitive conditions for this assumption can be derived on the basis of the
dominated convergence theorem such that E[5kf1(ξ

0)] = 5kE[f1(ξ
0)] = 0, where

the latter follows from the first-order conditions of a maximum of E[f1(ξ)] in ξ0.
Moreover, suppose that

Assumption 6.5.
P∞

k=1 k.2
−kE[(5kf1(ξ

0))2] <∞.

Then using Theorem 8.2 in Billingsley (1968) it can be shown that

Lemma 6.2.(∗) Under Assumptions 6.4 and 6.5, bZn ⇒ Z on [0, 1], where Z is a
zero-mean Gaussian process with covariance function

Γ(u1, u2) = E[Z(u1)Z(u2)]

=
∞X
k=1

∞X
m=1

E[(5kf1(ξ
0))(5mf1(ξ

0))]ηk(u1)ηm(u2). (6.10)
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Consequently, Assumptions 6.1-6.5 imply that

nX
m=1

bbm,n(u)√N(bξn,m − ξ0,m)⇒ Z(u). (6.11)

6.5. Extracting the parameters of interest via projection residuals

Recall that in the case of the SNP discrete choice model the parameters ξ0,1, ..., ξ0,p
correspond to the components of the Euclidean parameter vector θ0. Therefore,
in order to determine the limiting distribution of

√
N(bξn,1 − ξ0,1, ...,bξn,p − ξ0,p)

0,
we need to eliminate

Pn
m=p+1

bbm,n(u)√N(bξn,m − ξ0,m) from (6.11). A possible

way to do that is to project each bbm,n(u) for m ≤ p on the space spanned bybbp+1,n(u), ...,bbn,n(u), and use the residuals bam,n(u) involved to wipe out the func-
tions bbp+1,n(u), ...,bbn,n(u), as follows. Denote

ban(u) = (ba1,n(u), ...,bap,n(u))0 ,
and note that by the standard properties of projection residuals,

R 1
0
ban(u)(bbp+1,n(u),

...,bbn,n(u))du = Op,n−p4 and
R 1
0
ban(u)(bb1,n(u), ...,bbp,n(u))du = R 1

0
ban(u)ban(u)0du.

Hence by (6.7),

Z 1

0

ban(u)ban(u)0du√N
⎛⎜⎝ bξn,1 − ξ0,1

...bξn,p − ξ0,p

⎞⎟⎠ =

Z 1

0

ban(u)³bZn(u)−cWn(u)− bVn(u)´du.
Now suppose that there exists a non-random Rp-valued function a(u) on [0, 1]

such that

plim
N→∞

Z 1

0

(ban(u)− a(u))0 (ban(u)− a(u))du = 0 (6.12)

and Z 1

0

a(u)0a(u)du <∞. (6.13)

Then it follows that

plim
N→∞

Z 1

0

ban(u)ban(u)0du = Z 1

0

a(u)a(u)0du, (6.14)

4Here and in the sequel Ok,m denotes the k ×m zero matrix.
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as is easy to verify, whereas by (6.8), (6.9), (6.12) and Lemma 6.2,Z 1

0

ban(u)( bZn(u)−cWn(u)− bVn(u))du d→
Z 1

0

a(u)Z(u)du.

Hence,

√
N(bξn,1 − ξ0,1, ...,bξn,p − ξ0,p)

0 d→
µZ 1

0

a(u)a(u)0du
¶−1 Z 1

0

a(u)Z(u)du,

provided that

det

µZ 1

0

a(u)a(u)0du
¶
> 0. (6.15)

6.6. Convergence of the projection residuals

The next step is to determine the probability limit a of ban, by specializing the
conditions of Theorem B.1 in Appendix B to the present case. According to the
latter theorem, for proving (6.12) we need to show that there exist nonrandom
functions bm(u) such that for m = 1, ..., p,

||bbm,n − bm|| =
sZ 1

0

³bbm,n(u)− bm(u)´2 du = op(1), (6.16)

and that there exists a sequence ρm of positive numbers such that

nX
m=p+1

ρm||bbm,n − bm|| = op(1) (6.17)

and

liminf
n→∞

°°°°°
nX

m=p+1

ρmbm

°°°°° > 0. (6.18)

Then (6.12) holds, with a(u) the vector of residuals of the projections of b1(u),
b2(u), ... , bp(u) on span

¡{bm(u)}∞m=p+1¢ .
In view of (6.5) and (6.6), obvious candidates for the functions bm(u) are

bm(u) = −
∞X
k=1

E[5k,mf1(ξ
0)]2−k

√
2 cos(kπu) (6.19)
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Sufficient conditions for (6.16), (6.17) and (6.18) are that:

Assumption 6.6. For some τ ≥ 0,
(a)

P∞
k=1

P∞
m=1(k.m)

−2−τE[| 5k,m f1(ξ
0)|] <∞, and

(b) limε↓0
P∞

k=1

P∞
m=1(k.m)

−2−τE[sup||ξ−ξ0||`≤ε | 5k,m f1(ξ)−5k,mf1(ξ
0)|] = 0.

(c) For at least one pair k,m ∈ N, E[5k,p+mf1(ξ
0)] 6= 0.

Note that Assumption 6.6(a) impliesZ 1

0

bm(u)
2du =

∞X
k=1

2−2k(E[5k,mf1(ξ
0)])2

≤
Ã ∞X
k=1

k4+2τ2−2k
!
.

Ã ∞X
k=1

k−2−τE[| 5k,m f1(ξ
0)|]
!2
<∞,

so that (6.13) holds. Moreover,

Lemma 6.4. Under Assumptions 6.2, 6.3 and 6.6 the conditions (6.16), (6.17)
and (6.18) hold for the bm’s defined by (6.19), with ρm = t

m/m! for some t ∈ (0, 1)

Proof. Appendix A.

6.7. Main results

Recall that a(u) is the residual of the projection of b(u) = (b1(u), ..., bp(u))0 on the
Hilbert space S∞p+1 = span({bp+k(u)}∞k=1) spanned by the sequence {bk(u)}∞k=p+1.
Obviously, (6.15) holds if and only if

for all ξ = (ξ1, ..., ξp)0 ∈ Rp with ξ0ξ > 0,
pX

m=1

ξmbm(u) /∈ S∞p+1. (6.20)

This condition is equivalent to the condition that, with Sp1 = span({bk(u)}pk=1) ,
Sp1 ∩ S∞p+1 = {0}, (6.21)

the latter being the singleton of the zero function.
Now denote Sp+np+1 = span({bp+k(u)}nk=1) and recall that

S∞p+1 = ∪∞n=1Sp+np+1 =
¡∪∞n=1Sp+np+1

¢ ∪ C∞
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where the bar denotes the closure, and C∞ = S∞p+1\
¡∪∞n=1Sp+np+1

¢
. Note that C∞

does not contain the zero function 0 because 0 ∈ Sp+np+1 for all n ∈ N. Then (6.21)
is true if and only if

for all n ∈ N, Sp1 ∩ Sp+np+1 = {0} (6.22)

and
Sp1 ∩ C∞ = ∅. (6.23)

It is easy to verify that condition (6.22) is implied by the following more
transparent and verifiable condition:

Assumption 6.7. Denote βk,m = E[5k,mf1(ξ
0)] and

Bk,m =

⎛⎜⎝ β1,1 · · · β1,m
...

. . .
...

βk,1 · · · βk,m

⎞⎟⎠ .
For each n > p there exists a k ≥ n such that rank(Bk,n) = n.

Note that for parametric models with n-dimensional parameter vector ξ0, Assump-
tion 6.7 reduces to the standard assumption that the matrix Bn,n is nonsingular.

Lemma 6.5. Let an(u) be the residual of the projection of b(u) = (b1(u), ..., bp(u))0

on span({bp+k(u)}nk=1) . Under Assumption 6.7,
R 1
0
an(u)an(u)

0du is non-singular
for all n ∈ N.

Proof. Appendix.
However, condition (6.23) is too difficult, if not impossible, to break down in

more primitive and verifiable conditions. Therefore condition (6.23) has to be
assumed, either directly or indirectly as:

Assumption 6.8. limn→∞
R 1
0
an(u)an(u)

0du is non-singular as well.

Note that Assumption 6.7 together with condition (6.23) imply (6.20), which
by Z 1

0

a(u)a(u)0du = lim
n→∞

Z 1

0

an(u)an(u)
0du

implies Assumption 6.8.
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Now we have all the necessary conditions for our main result:

Theorem 6.1. Let bm(u) be defined by (6.19), and let a(u) be the vector of
residuals of the projection of b(u) = (b1(u), ..., bp(u))

0 on span({bp+m(u)}∞m=1) .
Denote bθn = (bξn,1, ...,bξn,p)0 and θ0 = (ξ0,1, ..., ξ0,p)

0. Under Assumptions 6.1-6.8,

√
N(bθn − θ0)

d→
µZ 1

0

a(u)a(u)0du
¶−1 Z 1

0

a(u)Z(u)du ∼ Np[0,Σ],

where

Σ =

µZ 1

0

a(u)a(u)0du
¶−1µZ 1

0

Z 1

0

a(u1)Γ(u1, u2)a(u2)
0du1du2

¶
×
µZ 1

0

a(u)a(u)0du
¶−1

with Γ(u1, u2) defined by (6.10).

Because the way asymptotic normality is proved should not matter for the
asymptotic normality result, the asymptotic variance matrix Σ must be invariant
for the choice of the weight functions ηk(u) defined by (6.6). On the other hand,
different specifications of ηk(u) yield different functions bbm,n(u) and therefore dif-
ferent residual vectors ban(u). Thus, at first sight the result of Theorem 6.1 seems
paradoxical.
This paradox will be solved by constructing a consistent estimator of Σ, as

follows.

6.8. A consistent variance estimator

To estimate Σ consistently, we need a consistent estimator of the covariance func-
tion Γ(u1, u2). The expression for the latter in (6.10) suggests the estimator

bΓn(u1, u2) = nX
k=1

nX
m=1

1

N

NX
j=1

(5kfj(bξn))(5mfj(bξn))ηk(u1)ηm(u2).
To prove the uniform consistency of bΓn(u1, u2) we need the condition that
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Assumption 6.9. limε↓0
P∞

k=1 2
−kE[sup||ξ−ξ0||`≤ε(5kf1(ξ)−5kf1(ξ

0))2] = 0.

Then it is not hard to verify that

Lemma 6.6.(∗) Under Assumptions 6.2, 6.5 and 6.9, plimN→∞ sup(u1,u2)∈[0,1]×[0,1]
|bΓn(u1, u2)− Γ(u1, u2)| = 0.

Next, modify (6.5) to

bbm,n(u) = − nX
k=1

Ã
1

N

NX
j=1

5k,mfj(bξn)
!
ηk(u), (6.24)

and let now ban(u) be based on (6.24). Then obviously Lemma 6.4 carries over, so
that (6.14) carries over, hence under the conditions of Theorem 6.1 and Lemma
6.6,

bΣn =

µZ 1

0

ban(u)ban(u)0du¶−1µZ 1

0

ban(u1)bΓn(u1, u2)ban(u2)0du1du2¶
×
µZ 1

0

ban(u)ban(u)0du¶−1 (6.25)

is a consistent estimator of Σ.

Theorem 6.2.(∗) Let the conditions of Theorem 6.1 hold and let n > p. De-
note bβk,m = 1

N

PN
j=15k,mfj(bξn), bγk,m = 1

N

PN
j=1(5kfj(bξn))(5mfj(bξn)), and con-

sider the matrices bB1,n = (bβk,m; k = 1, ..., n, m = 1, ..., p), bB2,n = (bβk,m; k =
1, ..., n, m = p + 1, ..., n), bBn = ( bB1,n, bB2,n), and bCn = (bγk,m; k,m = 1, ..., n).

Suppose that rank( bBn) = n. Then the matrix bΣn in (6.25) takes the formbΣn = ( bB01,ncMn
bB1,n)−1 bB01,ncMn

bCncMn
bB1,n( bB01,ncMn

bB1,n)−1,
where cMn = In − bB2,n( bB02,n bB2,n)−1 bB02,n.
The proof of Theorem 6.2 involves tedious but quite standard linear algebra ex-
ercises, and will therefore be given in Bierens (2011).
Thus, the estimator bΣn appears to be same as the standard variance estimator

in the fixed n case, and therefore Σ is invariant for the choice of the weight
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functions ηk(u) as long as asymptotic normality is preserved. This result confirms
similar conclusions by Newey (1994), Ai and Chen (2007), Ackerberg et al. (2010)
and Ichimura and Lee (2010).

7. Verifying the asymptotic normality conditions for the
SNP Logit model

7.1. Does the quantile penalty function matter for asymptotic normal-
ity?

It follows from (4.4) that ∇kΠ(δ0) = 0, ∇k,mΠ(δ0) = 0, and by Lemma 3.4 that
there exists a constant C such that

sup
k∈N

|∇kΠ (δ)| = sup
k∈N

|∇kΠ (δ)−∇kΠ (δ0)| ≤ C.||δ − δ0||0,
sup
k,m∈N

|∇k,mΠ (δ)| = sup
k,m∈N

|∇k,mΠ (δ)−∇k.mΠ (δ0)| = C.||δ − δ0||0.

It is now easy to verify from Section 6 that the penalty function Π (δ) has neither
an effect on the functions bm(u) defined in (6.19) nor on the Gaussian process
Z in Lemma 6.2, and therefore has no effect on the asymptotic normality of bθn.
That would have been different if we had chosen Π (δ) = (H(u1|δ) − u1)2 +

(H(u2|δ) − u2)2 for example, because in that case ∇k,mΠ(δ0) > 0, so that the
functions bm(u) would depend on ∇k,mΠ(δ0).

7.2. The SNP Logit model in least squares form

Because we may ignore the penalty function, the function f(Z, ξ) in Assumption
6.1 for the SNP Logit model in least squares form is now

f(Z, ξ) = f(Z, (θ, δ)) = − (Y −H(G((1, X 0)θ)|δ))2 , Z = (Y,X 0)0,

where (θ, δ) ∈ Θ×∆`, with ` to be determined.
Using Lemma 3.4 and the mean value theorem it can be shown that

Lemma 7.1.(∗) Under the conditions of Theorem 4.1 we have:
(a) supk∈N |∇kf(Z, ξ)−∇kf(Z, ξ0)| < C.(1 + ||X||)2||ξ − ξ0||0 for some constant
C;
(b) E[∇kf(Z, ξ0)] = 0 for all k ∈ N;
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(c) supk∈NE[(∇kf(Z, ξ0))2] <∞;
(d) limε↓0 supk∈NE[sup||ξ−ξ0||0≤ε(5kf1(ξ)−5kf1(ξ

0))2] = 0.

Consequently, Assumptions 6.3, 6.4, 6.5 and 6.9 hold, with `0 = 0 in Assumption
6.3.
The next condition is needed in part (c) of Lemma 7.2 below.

Assumption 7.1. The functions

u (1− u) ∂

∂u

½ ∇kH(u|δ0)
u (1− u) .h(u|δ0)

¾
, k ∈ N,

are not constant on (0, 1).

The plausibility of this assumption can be verified from the expression for h0(u) =
h(u|δ0) in (3.1).
It can now be shown that

Lemma 7.2.(∗) Under the conditions of Theorem 4.1 we have:
(a) limε↓0 sup||ξ−ξ0||1≤ε supk,m∈NE[|∇k,mf(Z, ξ)−∇k,mf(Z, ξ0)|] = 0;
(b) supk,m∈N |∇k,mf(Z, ξ0)| < C.(1 + ||X||)2 for some constant C;
(c) The matrix Bp,p in Assumption 6.7 takes the form

Bp,p = −2.E
∙
(h(G((1,X 0)θ0)|δ0)G0((1, X 0)θ0))

2

µ
1 X 0

X XX 0

¶¸
and is nonsingular.5 Moreover, under Assumption 7.1 the matrices Bp+k,p+k, k ∈
N, are nonsingular ;
(d) E[∇k+p,k+pf(Z, ξ0)] 6= 0 for all k ∈ N.

It follows now from Lemmas 7.1 and 7.2 that

Theorem 7.1. Under the conditions of Theorem 4.1 and Assumptions 6.8 and
7.1 all the conditions of Theorems 6.1 and 6.2 are satisfied for the SNP Logit
model in least squares form, with ` = 1 and `0 = 0.

5Due to Assumption 2.1.
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7.3. The SNP Logit model in log-likelihood form

The function f(Z, ξ) for the SNP Logit model in log-likelihood form without
penalty takes the form

f(Z, ξ) = f(Z, (θ, δ))

= Y ln (H (G((1, X 0)θ)|δ)) + (1− Y ) ln (1−H (G((1,X 0)θ)|δ)) ,

where again Z = (Y,X 0)0 and ξ = (θ, δ) ∈ Θ×∆` for some ` ≥ 1.
Similar to Lemma 7.1 it can be shown (after some tedious derivations) that

Lemma 7.3.(∗) Under the conditions of Theorem 4.2 we have:
(a) There exist constants C and d such that supk∈N |∇kf(Z, ξ) − ∇kf(Z, ξ0)| <
C.(1 + ||X||)2||ξ − ξ0||0 if ||ξ − ξ0||0 < d;
(b) E[∇kf(Z, ξ0)] = 0 for all k ∈ N;
(c) supk∈NE[(∇kf(Z, ξ0))2] <∞;
(d) limε↓0 supk∈NE[sup||ξ−ξ0||0≤ε(5kf1(ξ)−5kf1(ξ

0))2] = 0.

Thus again, Assumptions 6.3, 6.4, 6.5 and 6.8 hold, with `0 = 0 in Assumption
6.3.
Next, suppose now that instead of Assumption 7.1,

Assumption 7.2. The functions

u(1− u) ∂
∂u

(µ
H(u|δ0) (1−H(u|δ0))

u(1− u)
¶2 5kH(u|δ0)

h (u|δ0)

)
, k ∈ N,

are not constant on (0, 1).

Then after tedious derivations it can be shown that

Lemma 7.4.(∗) Under the conditions of Theorem 4.2 we have:
(a) limε↓0 sup||ξ−ξ0||1≤ε supk,m∈NE[|∇k,mf(Z, ξ)−∇k,mf(Z, ξ0)|] = 0;
(b) supk,m∈N |∇k,mf(Z, ξ0)| < C.(1 + ||X||)2 for some constant C;
(c) The matrix Bp,p in Assumption 6.7 takes the form

Bp,p = −E
"

(h(G((1, X 0)θ0)|δ0)G0((1,X 0)θ0))
2

H (G((1,X 0)θ0)|δ0) (1−H (G((1,X 0)θ0)|δ0))
µ
1 X 0

X XX 0

¶#
,
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which nonsingular. Moreover, under Assumption 7.2 the matrices Bp+k,p+k, k ∈
N, are nonsingular.
(d) E[∇k+p,k+pf(Z, ξ0)] 6= 0 for all k ∈ N.

Thus it follows from Lemmas 7.3 and 7.4 that

Theorem 7.2. Under the conditions of Theorem 4.2 and Assumptions 6.8 and
7.2 all the conditions of Theorems 6.1 and 6.2 are satisfied for the SNP Logit
model in log-likelihood form, with ` = 1 and `0 = 0.

8. Conclusions

In this paper I have shown that consistency of sieve estimators requires only a
few mild conditions, without relying directly on a uniform law of large numbers
[c.f. Lemma 5.2], and that the sieve estimators of the Euclidean parameters are
asymptotically normally distributed similar to the standard finite dimensional M-
estimation approach. The latter is my main contribution to the sieve estimation
literature. Although asymptotic normality of sieve estimators has already been
established in the literature, albeit under high-level conditions, the novelty in
this paper is the alternative way asymptotic normality is proved and the weak
conditions involved. Of course, the trade off is that the approach in this paper is
confined to smooth SNP models for which the infinite-dimensional parameter is
confined to a pre-specified compact metric space, which is less general than the
standard conditions in the sieve estimation literature. See Chen (2007) for the
latter.
The results in this paper are motivated and illustrated by an SNP discrete

choice model. However, my results are applicable to most SNP models based
on series expansions of unknown functions. For example, consider the monotone
index regression model E[Y |X] = f(α+ β0X), where f(x) is a strictly monotonic
increasing continuous function on R. Then we can write f(x) = G−1(H(G(x))),
where G is an a priori chosen distribution function on R with inverse G−1 and
H(u) is a distribution function on the unit interval. This model is identified under
the same conditions as the SNP discrete choice model, and can be estimated by
penalized sieve least squares.
Similarly, my approach is applicable to copula models with SNP marginal

distributions. See Chen et al. (2006). However, translating the conditions in the
latter paper to mine is beyond the scope and size limitation of the current paper.
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As mentioned in the introduction, another example of an SNP model is the
mixed proportional hazard (MPH) model. In Bierens (2008) I have shown that
the interval censored MPH model is identified under similar conditions as for the
SNP discrete choice model and that under these conditions the sieve estimators
of the Euclidean parameters and the unobserved heterogeneity distribution are
consistent. Therefore, it seems that the asymptotic normality results in the cur-
rent paper are applicable as well. However, an issue with the uncensored single
spell MPH model is that for particular specifications of the baseline hazard its
efficiency bound is singular, which implies that any consistent estimator of the
Euclidean parameter vector in the MPH model involved converges at a slower
rate than the square root of the sample size. See Newey (1990) for a general
review of efficiency bounds, and Hahn (1994) and Ridder and Woutersen (2003)
for the efficiency bound of the MPH model. On the other hand, Hahn (1994) has
also shown that in general the multiple spell MPH model does not suffer from
this problem, which is confirmed by the estimation results of Bierens and Car-
valho (2007). Thus, Assumptions 6.7 and/or 6.8 may not hold for the single spell
MPH model, but investigating this issue further is also beyond the scope and size
limitation of the current paper.
Although the results in this paper are based on the i.i.d. assumption, they

can be extended straightforwardly to SNP time series models. All we need is to
generalize the uniform strong law of large numbers in Lemma 5.2 to the time
series case, for example by assuming ergodicity, and to replace the reference to
the standard central limit theorem in the proof of Lemma 6.2 in Bierens (2011)
by the martingale difference central limit theorem of McLeish (1974).6

9. Appendix A: Proofs

9.1. Proof of Lemma 3.2

The density h(u) in (3.1) can be written as h(u) = η(u)2/
R 1
0
η(v)2dv, where

η(u) = 1 +
∞X
m=1

δm
√
2 cos (mπu) a.e. on (0, 1). (9.1)

6Because for each k the derivatives 5kfj(ξ
0) in (6.1) are then martingale differences, with j

the time index.
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Moreover, it follows from the argument in Bierens (2008) that in general,

δm =

R 1
0
(I(u ∈ B)− I(u ∈ [0, 1]\B))√2 cos (mπu)

p
h(u)duR 1

0
(I(u ∈ B)− I(u ∈ [0, 1]\B))ph(u)du , (9.2)

1p
1 +

P∞
m=1 δ

2
m

=

Z 1

0

(I(u ∈ B)− I(u ∈ [0, 1]\B))
p
h(u)du.

for some Borel set B satisfying
R 1
0
(I(u ∈ B)− I(u ∈ [0, 1]\B))ph(u)du > 0,

hence

η(u) = (I(u ∈ B)− I(u ∈ [0, 1]\B))
p
h(u)

vuut1 + ∞X
m=1

δ2m (9.3)

Next, let

hn(u) =

¡
1 +

Pn
m=1 δm

√
2 cos (mπu)

¢2
1 +

Pn
m=1 δ

2
m

= ηn(u)
2/

Z 1

0

ηn(v)
2dv,

where

ηn(u) = 1 +
nX

m=1

δm
√
2 cos (mπu)

= (I(u ∈ B)− I(u ∈ [0, 1]\B))
p
hn(u)

vuut1 + nX
m=1

δ2m. (9.4)

and note that by (3.1),

h(u) = lim
n→∞

hn(u) a.e. on [0, 1]. (9.5)

Now let S ⊂ [0, 1] be the set with Lebesgue measure zero on which (9.5) fails
to hold. Then for any u0 ∈ (0, 1)\S, limn→∞ hn(u0) = h(u0) > 0, hence for a
sufficiently large n, hn(u0) > 0. Because obviously hn(u) and ηn(u) are continuous
on (0, 1), for such an n there exists a small εn(u0) > 0 such that hn(u) > 0 for all
u ∈ (u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1), and therefore

I(u ∈ B)− I(u ∈ [0, 1]\B) = ηn(u)p
hn(u)

p
1 +

Pn
m=1 δ

2
m

(9.6)
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is continuous on (u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1). Substituting (9.6) in (9.3) it
follows now that η(u) is continuous on (u0− εn(u0), u0+ εn(u0))∩ (0, 1), hence by
the arbitrariness of u0 ∈ (0, 1)/S, η(u) is continuous on (0, 1).
Next, suppose that η(u) takes positive and negative values on (0, 1). Then by

the continuity of η(u) on (0, 1) there exists a u0 ∈ (0, 1) for which η(u0) = 0 and
thus h(u0) = 0, which however is excluded by the condition that h(u) > 0 on
(0, 1). Therefore, either η(u) > 0 for all u ∈ (0, 1) or η(u) < 0 for all u ∈ (0, 1).
However, the latter is excluded because by (9.1),

R 1
0
η(u)du = 1. Thus, η(u) > 0

on (0, 1), so that by (9.3), I(u ∈ B) − I(u ∈ [0, 1]\B) = 1 on (0, 1), hence by
(9.2),

δm =

R 1
0

√
2 cos (mπu)

p
h(u)duR 1

0

p
h(u)du

.

9.2. Proof of Theorem 5.2

First, observe that (∪∞n=1Ξn) ∩ Ξ = ∪∞n=1(Ξn ∩ Ξ) ⊂ ∪∞n=1(Ξn ∩ Ξ), hence

Ξ ∩ Ξ = (∪∞n=0Ξn) ∩ Ξ ⊂ ∪∞n=0(Ξn ∩ Ξ).

Because ξ0 ∈ Ξ ∩ Ξ it follows therefore that, for sufficient large n, say n ≥ n,
each space Ξn ∩ Ξ contains an element ξn such that limn→∞ d(ξn, ξ0) = 0, hence
by the continuity of the function Q(ξ) = E[f(Z, ξ)] in ξ0 [c.f. condition (b) in
Assumption 5.4], limn→∞Q(ξn) = Q(ξ0). Thus, for an arbitrary ε > 0 there exists
an n(ε) such that Q(ξn(ε)) > Q(ξ0)− ε/2.

Recall that bQN(bξnN ) = supξ∈ΞnN
bQN(ξ) ≥ bQN(ξn(ε)) if nN ≥ n(ε), wherebQN(ξ) is defined by (5.1). Moreover, it follows from condition (c) of Assumption

5.2 and condition (a) of Assumption 5.4 that E[|f(Z, ξn(ε))|] = −E[f(Z, ξn(ε))] ≤
−E[f(Z, ξ)] <∞, so that by Kolmogorov’s strong law of large numbers, bQN(ξn(ε))
a.s.→ Q(ξn(ε)). Thus for N → ∞, bQN(bξnN ) ≥ bQN(ξn(ε)) a.s.→ Q(ξn(ε)) > Q(ξ

0) − ε/2.

Furthermore, it follows from Lemma 5.3 that plimN→∞( bQKN ,N(
bξnN )−QKN

(bξnN )) =
0, whereas by Jensen’s inequality and the convexity of the function max(x,−K),bQKN ,N(

bξnN ) ≥ max( bQN(bξnN ),−KN) ≥ bQN(bξnN ). Hence for N →∞,
QKN

(bξnN ) = QKN
(bξnN )− bQKN ,N(

bξnN ) + bQKN ,N(
bξnN )

= bQKN ,N(
bξnN ) + op(1) ≥ bQN(bξnN ) + op(1)

≥ Q(ξn(ε)) + op(1) > Q(ξ
0)− ε/2 + op(1).
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Thus,
lim
N→∞

Pr
h
QKN

(bξnN ) > Q(ξ0)− ε
i
= 1. (9.7)

Recall that convergence in probability is equivalent to a.s. convergence along
a further subsequence Nk, say, of an arbitrary subsequence of N . Thus, it follows
from (9.7) that there exists a set A ∈ F with P (A) = 1 such that for all ω ∈ A,

lim
k→∞

I
³
QKNk

³bξnNk (ω)´ > Q(ξ0)− ε
´
= 1 (9.8)

Now let ξ∗(ω) ∈ Ξ be a limit point of the sequence bξnNk (ω) . Then there ex-
ists a further subsequence of Nk, say Nk(m), possibly depending on ω, such that
limm→∞ d(bξnNk(m) (ω) , ξ∗(ω)) = 0, hence for any fixed K > 0, limm→∞QK(bξnNk(m)
(ω)) = QK(ξ∗(ω)), due to the continuity of QK(ξ). Because for KNk ≥ K,
QKNk

(ξ) ≤ QK(ξ), it follows now from (9.8) that for arbitraryK > 0,QK(ξ∗(ω)) >

Q(ξ0)−ε. The latter implies thatQ(ξ∗(ω)) > Q(ξ0)−ε, because−max(f(z, ξ∗(ω)),
−K) is non-negative and non-decreasing in K, so that by monotone convergence,
limK→∞QK(ξ∗(ω)) = Q(ξ∗(ω)). Because ε > 0 was arbitrary it follows now that
Q(ξ∗(ω)) = Q(ξ0), which by the uniqueness of ξ0 implies that ξ∗(ω) = ξ0. Thus,
all the limit points of bξnNk (ω) are equal to ξ0, hence limk→∞ d(bξnNk , ξ0) = 0 a.s.,
which implies plimN→∞ d(bξnN , ξ0) = 0.
9.3. Proof of Lemma 6.4

Note that if we choose ρm such that
P∞

m=1 ρm <∞ then (6.16) and (6.17) hold if

nX
m=1

ρm||bbm,n − bm||2 = op(1), (9.9)

which is easier to handle.
Suppose that the sequence ρm can be chosen such that

P∞
m=1m

4+2τρm <∞.
Then it follows from (6.24) and (6.19) that

nX
m=1

ρm||bbm,n − bm||2
=

nX
k=1

2−2k
nX

m=1

ρm

Ã
1

N

NX
j=1

5k,mfj(ξ
0
n + λk(bξn − ξ0n))−E[5k,mf1(ξ

0)]

!2
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+
nX

k=n+1

2−2k
nX

m=1

ρm
¡
E[5k,mf1(ξ

0)]
¢2

≤ 2
Ã ∞X
k=1

k4+2τ2−2k
!Ã ∞X

m=1

m4+2τρm

!

×
Ã
1

N

NX
j=1

Ã ∞X
k=1

∞X
m=1

k−2−τm−2−τ
¯̄̄
5k,mfj(ξ

0
n + λk(bξn − ξ0n))−5k,mfj(ξ

0)
¯̄̄!!2

+2

Ã ∞X
k=1

k4+2τ2−2k
!Ã ∞X

m=1

m4+2τρm

!

×
Ã
1

N

NX
j=1

Ã ∞X
k=1

∞X
m=1

k−2−τm−2−τ
¡5k,mfj(ξ

0)−E[5k,mf1(ξ
0)]
¢!!2

+

Ã ∞X
k=n+1

k4+2τ2−2k
!Ã ∞X

m=1

m4+2τρm

!Ã ∞X
k=1

∞X
m=1

k−2−τm−2−τE[| 5k,m f1(ξ
0)|]
!2

Because by Assumption 6.6(a) and Kolmogorov’s strong law of large number,

1

N

NX
j=1

Ã ∞X
k=1

∞X
m=1

k−2−τm−2−τ
¡5k,mfj(ξ

0)− E[5k,mf1(ξ
0)]
¢! a.s.→ 0

and limn→∞
P∞

k=n+1 k
4+2τ2−2k = 0,

P∞
m=1m

4+2τρm <∞, it follows that
nX

m=1

ρm||bbm,n − bm||2 ≤ 2Ã ∞X
k=1

k4+2τ2−2k
!Ã ∞X

m=1

m4+2τρm

!
S2N + op(1)

where

SN =
1

N

NX
j=1

Ã ∞X
k=1

∞X
m=1

k−2−τm−2−τ
¯̄̄
5k,mfj(ξ

0
n + λk(bξn − ξ0n))−5k,mfj(ξ

0)
¯̄̄!

= SN .I
³
||bξn − ξ0||` ≤ ε

´
+ SN .I

³
||bξn − ξ0||` > ε

´
≤

∞X
k=1

∞X
m=1

k−2−τm−2−τ
1

N

NX
j=1

sup
||ξ−ξ0||`≤ε

¯̄5k,mfj(ξ)−5k,mfj(ξ
0)
¯̄
+ op(1)
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It follows now from Assumption 6.6(b) and Chebyshev’s inequality for first mo-
ments that SN = op(1), which proves (9.9).
Now observe that

P∞
m=1m

4+2τ tm/m! <∞ for arbitrary t ∈ (0, 1), so that (9.9)
holds for ρm = tm/m!. Thus for arbitrary t ∈ (0, 1),

Pn
m=1

tm

m!
||bbm,n−bm||2 = op(1).

The purpose of t will become clear below.
As to condition (6.18), observe from (6.6) and (6.19) that

lim inf
n→∞

°°°°°
nX

m=p+1

tm

m!
bm

°°°°°
2

=
∞X
k=1

2−2k
Ã ∞X
m=p+1

tm

m!
E[5k,mf1(ξ

0)]

!2
hence (6.18) holds if for some t ∈ (0, 1) there exists at least one k ∈ N such thatP∞

m=p+1(t
m/m!)E[5k,mf1(ξ

0)] 6= 0. This is the case under Assumption 6.6(c).
To see this, suppose that for the k in Assumption 6.6(c) and all t ∈ (0, 1),P∞

s=p+1(t
s/s!)E[5k,sf1(ξ

0)] = 0. Then for all t ∈ (0, 1),

0 =
dp+m

(dt)p+m

∞X
s=p+1

ts

s!
E[5k,sf1(ξ

0)] =
∞X
s=0

ts

s!
E[5k,s+p+mf1(ξ

0)],

hence by the continuity of the latter, letting t ↓ 0 it follows thatE[5k,p+mf1(ξ
0)] =

0, which contradicts Assumption 6.6(c).

9.4. Proof of Lemma 6.5

For n > p and k ≥ n, partition the matrix Bk,n in Assumption 6.8 as Bk,n =
(B1,k,n, B2,k,n) where B1,k,n is the matrix of the first p columns of Bk,n. Denote

ϕk(u) = (η1(u), ..., ηk(u))
0, Φk =

Z 1

0

ϕk(u)ϕk(u)
0du,

and recall that ηk(u) = 2−k
√
2 cos(kπu), so that Φk = diag

¡
2−2., 2−4, ..., 2−2k

¢
.

Moreover, denote

bk,m(u) = −b0k,mϕk(u), m = 1, 2, ..., n,
where bk,m is column m of Bk,n, and observe from (6.19) that

bm(u)− bk,m(u) =
∞X

m=k+1

2−mE[5m,kf1(ξ
0)]
√
2 cos(mπu)
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so that by Assumption 6.6(a),

lim
k→∞

sup
0≤u≤1

|bm(u)− bk,m(u)| = 0.

Next denote

b
(1)
k (u) = (bk,1(u), ..., bk,p(u))

0 , b(2)k (u) = (bk,p+1(u), ..., bk,n(u))
0 .

Then
b
(1)
k (u) = −B01,k,nϕk(u), b(2)k (u) = −B02,k,nϕk(u)

The residual ak,n(u) of the projection of b
(1)
n (u) on span

³
b
(2)
n (u)

´
takes the form

ak,n(u) = b
(1)
k (u)− Ωnb

(2)
k (u) = −B01,k,nϕk(u) + ΩnB

0
2,k,nϕk(u)

where
Ωn = B

0
1,k,nΦkB2,k,n

¡
B02,k,nΦkB2,k,n

¢−1
(9.10)

Hence Z 1

0

ak,n(u)ak,n(u)
0du

= B01,k,nΦkB1,k,n −B01,k,nΦkB2,k,n
¡
B02,k,nΦkB2,k,n

¢−1
B02,k,nΦkB1,k,n(9.11)

which is non-singular because

B0k,nΦkBk,n =
µ
B01,k,nΦkB1,k,n B01,k,nΦkB2,k,n
B02,k,nΦkB1,k,n B02,k,nΦkB1,k,n

¶
(9.12)

is nonsingular, and the upper-left block of the inverse of (9.12) is just the inverse
of the matrix (9.11).
Finally, note that

lim
k→∞

B0k,nΦkBk,n =
µ
limk→∞B01,k,nΦkB1,k,n limk→∞B01,k,nΦkB2,k,n
limk→∞B02,k,nΦkB1,k,n limk→∞B02,k,nΦkB1,k,n

¶
is nonsingular, and therefore so isZ 1

0

an(u)an(u)
0du = lim

k→∞

Z 1

0

ak,n(u)ak,n(u)
0du

= lim
k→∞

B01,k,nΦkB1,k,n

−
³
lim
k→∞

B01,k,nΦkB2,k,n
´³

lim
k→∞

B02,k,nΦkB2,k,n
´−1 ³

lim
k→∞

B02,k,nΦkB1,k,n
´
.
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10. Appendix B: Projections on a Hilbert space spanned by
random elements

Theorem B.1. Let YN and X1,N , X2,N , ....,Xn,N be random elements of a Hilbert
space H on the basis on a sample of size N, where n is a subsequence of N.
Let bYn,N be the projection of YN on span({Xm,N}nm=1) , with residual Un,N =

YN − bYn,N . Suppose that the following conditions hold.
(a) There exists a non-random element y of H such that

plim
N→∞

||YN − y|| = 0. (10.1)

(b) There exist a sequence {xm}∞m=1 of non-random elements of H and a sequence
{ρm}∞m=1 of positive numbers such that

plim
N→∞

nX
m=1

ρm||Xm,N − xm|| = 0 (10.2)

and

liminf
n→∞

°°°°°
nX

m=1

ρmxm

°°°°° > 0. (10.3)

Then plimN→∞||bYn,N − by|| = 0 and plimN→∞||Un,N − u|| = 0, where by is the
projection of y on span({xm}∞m=1) and u = y − by is the residual involved.
Proof : Note that ||bYn,N−by|| = ||(YN−Un,N)−(y−u)|| = ||(u−Un,N)−(YN−y)|| ≤
||Un,N−u||+||YN−y||, hence by condition (10.1), ||bYn,N−by|| ≤ ||Un,N−u||+op(1).
Therefore it suffices to prove ||Un,N − u|| = op(1), as follows.
Let eYn,N be the projection of y on span({Xm,N}nm=1) , with residual eUn,N =

y − eYn,N , and let byn be the projection of y on span({xm}nm=1) , with residual
un = y − byn. Then by the triangular inequality, ||Un,N − un|| ≤ ||Un,N − eUn,N ||+
||un − eUn,N ||. It will be shown that

||Un,N − eUn,N || = op(1) (10.4)

and
||byn − eYn,N || = ||un − eUn,N || = op(1). (10.5)

Because limn→∞ ||byn − by|| = 0 and thus limn→∞ ||un − u|| = 0, the result of the
theorem under review then follows from (10.4) and (10.5).
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Proof of (10.4)
Denote the angle between two elements x and y of H by ϕ(x, y). Recall that
cos(ϕ(x, y)) = hx, yi/(||x||.||y||), which implies that

sin2
³
ϕ(YN , bYn,N)´ = ||Un,N ||2/||YN ||2, sin2

³
ϕ(y, eYn,N)´ = ||eUn,N ||2/||y||2,

cos
³
ϕ(YN , bYn,N)´ = ||bYn,N ||/||YN ||, cos³ϕ(y, eYn,N)´ = ||eYn,N ||/||y||.

Using these formulas we can write

||Un,N − eUn,N ||2 = ||Un,N ||2 + ||eUn,N ||2 − 2DUn,N , eUn,NE
= ||YN ||2 sin2

³
ϕ(YN , bYn,N)´+ ||y||2 sin2 ³ϕ(y, eYn,N)´− 2DUn,N , eUn,NE

= ||YN ||2 + ||y||2 − ||YN ||2 cos2
³
ϕ(YN , bYn,N)´− ||y||2 cos2 ³ϕ(y, eYn,N)´

−2
D
Un,N , eUn,NE

= ||YN − y||2 − ||YN ||2 cos2
³
ϕ(YN , bYn,N)´− ||y||2 cos2 ³ϕ(y, eYn,N)´

+2 hYN , yi− 2
D
Un,N , eUn,NE

and D
Un,N , eUn,NE = hUn,N , eUn,N + eYn,Ni = hUn,N , yi
= hUn,N + bYn,N , yi− hbYn,N , yi = hYN , yi− hbYn,N , yi
= hYN , yi− cos

³
ϕ(y, bYn,N)´ ||bYn,N ||.||y||

= hYN , yi− cos
³
ϕ(y, bYn,N)´ cos³ϕ(YN , bYn,N)´ ||y||.||YN ||

≥ hYN , yi− cos
³
ϕ(y, eYn,N)´ cos³ϕ(YN , bYn,N)´ ||y||.||YN ||

where the inequality follows from cos
³
ϕ(y, bYn,N)´ ≤ cos³ϕ(y, eYn,N)´ . Thus

||Un,N − eUn,N ||2 ≤ ||YN − y||2

−
³
||YN || cos

³
ϕ(YN , bYn,N)´− ||y|| cos³ϕ(y, eYn,N)´´2

≤ ||YN − y||2 = op(1)
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where the op(1) term is due to condition (10.1). This proves (10.4).

Proof of (10.5)
Let r1 = x1 and for m ≥ 2, let rm be the residual of the projection of xm on
span(x1, ..., xm−1). Denote em = ||rm||−1rm if ||rm|| > 0 and em = 0 if ||rm|| = 0.
Similarly, let R1,N = X1,N and for m = 2, ..., n, let Rm,N be the residual of the
projection of Xm,N on span(X1,N , ...,Xm−1,N). Note that by condition (10.2),

||Rm,N − rm|| = op(1). (10.6)

Denote bem,N = ||Rm,N ||−1Rm,N if ||Rm,N || > 0, and bem,N = 0 if ||Rm,N || = 0.
Then we can write byn = Pn

m=1 αmem, where αm = hy, emi and
P∞

m=1 α
2
m < ∞,

and eYn,N =Pn
m=1 bαm,Nbem,N , where bαm,N = hy,bem,Ni .

It follows from the trivial equalities ||byn−eYn,N ||2 = ||eYn,N ||2+||byn||2−2hbyn, eYn,Ni
and hbyn, eYn,Ni = hbyn, y− eUn,Ni = ||byn||2−hbyn, eUn,Ni that ||byn− eYn,N ||2 = ||eYn,N ||2−
||byn||2 + 2hbyn, eUn,Ni. Moreover, using the Cauchy-Schwarz inequality and the fact
that ||eUn,N || ≤ ||y||, it follows that¯̄̄Dbyn, eUn,NE¯̄̄ =

¯̄̄̄
¯
*

nX
m=1

αmem, eUn,N+
¯̄̄̄
¯ =

¯̄̄̄
¯
*

nX
m=1

αmI(||em|| > 0)em, eUn,N+
¯̄̄̄
¯

=

¯̄̄̄
¯
*

nX
m=1

αmI(||em|| > 0)(em − bem,N), eUn,N+
¯̄̄̄
¯

≤ ||eUn,N ||.
°°°°°

nX
m=1

αmI(||em|| > 0)(em − bem,N)
°°°°°

≤ ||y||.
°°°°°

nX
m=1

αmI(||em|| > 0)(em − bem,N)
°°°°°

≤ ||y||.
°°°°°

kX
m=1

αmI(||em|| > 0)(em − bem,N)
°°°°°+ 2||y||

vuut ∞X
m=k+1

α2m

Given an arbitrary ε > 0 we can choose k so large that 2||y||
qP∞

m=k+1 α
2
m < ε.

Moreover, note that by (10.6), (em−bem,N)I (||em|| > 0) = (||rm||−1rm− ||Rm,N ||−1
Rm,N)I(||rm|| > 0) = op(1), hence for m ≤ k, ||Pk

m=1 αmI(||em|| > 0)(em −bem,N)|| = op(1). Consequently, hbyn, eUn,Ni = op(1) and thus
||byn − eYn,N ||2 = ||eYn,N ||2 − ||byn||2 + op(1). (10.7)
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The next step is to show that

||eYn,N || ≤ ||byn||+ op(1), (10.8)

as follows. Note that

||eUn,N ||2 = inf
β1,...,βn

°°°°°y −
nX

m=1

βmXm,N

°°°°°
2

= inf
(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

inf
λ

°°°°°y − λ
nX

m=1

ξmXm,N

°°°°°
2

= inf
(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

(
||y||2 −

µhy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

¶2)

= ||y||2 − sup
(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

(hy,Pn
m=1 ξmXm,Ni)2

kPn
m=1 ξmXm,Nk2

and ||y||2 = ||eYn,N + eUn,N ||2 = ||eYn,N ||2 + ||eUn,N ||2, so that
||eYn,N ||2 = sup

(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

(hy,Pn
m=1 ξmXm,Ni)2

kPn
m=1 ξmXm,Nk2

(10.9)

Because without loss of generality we may assume that for the optimal ξm’s,
hy,Pn

m=1 ξmXm,Ni ≥ 0, it follows from (10.9) that

||eYn,N || = sup
(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

hy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

. (10.10)

and similarly,

||byn|| = sup
(ξ1,...,ξn)0∈Xnm=1[−ρm,ρm]

hy,Pn
m=1 ξmxmi

kPn
m=1 ξmxmk

(10.11)

Note that by condition (10.3) at least one xm is non-zero, so that (10.10) and
(10.11) are well-defined for sufficiently large n.
The ratios in (10.10) and (10.11) are scale-invariant. Therefore, without loss

of generality we may impose the normalization°°°°°
nX

m=1

ξmxm

°°°°° =Mn =
1

2

°°°°°
nX

m=1

ρmxm

°°°°° , (10.12)
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for example. Note that (10.12) is compatible with (ξ1, ..., ξn)0 ∈ Xnm=1[−ρm, ρm].
Thus, denoting

Ξn =

(
(ξ1, ..., ξn)

0 ∈ Xnm=1[−ρm, ρm] :
°°°°°

nX
m=1

ξmxm

°°°°° =Mn

)
,

the expressions (10.10) and (10.11) are equivalent to

||eYn,N || = sup
(ξ1,...,ξn)0∈Ξn

hy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

(10.13)

and

||byn|| = sup
(ξ1,...,ξn)0∈Ξn

hy,Pn
m=1 ξmxmi

kPn
m=1 ξmxmk

, (10.14)

respectively. Moreover, note that for (ξ1, ..., ξn)0 ∈ Ξn,°°°°°
nX

m=1

ξmXm,N

°°°°°
2

=

°°°°°
nX

m=1

ξm(Xm,N − xm) +
nX

m=1

ξmxm

°°°°°
2

=

°°°°°
nX

m=1

ξm(Xm,N − xm)
°°°°°
2

+

°°°°°
nX

m=1

ξmxm

°°°°°
2

+ 2

*
nX

m=1

ξm(Xm,N − xm),
nX

m=1

ξmxm

+

≥
°°°°°

nX
m=1

ξm(Xm,N − xm)
°°°°°
2

+

°°°°°
nX

m=1

ξmxm

°°°°°
2

− 2
°°°°°

nX
m=1

ξm(Xm,N − xm)
°°°°° .
°°°°°

nX
m=1

ξmxm

°°°°°
=

°°°°°
nX

m=1

ξm(Xm,N − xm)
°°°°°
2

+M2
n − 2Mn

°°°°°
nX

m=1

ξm(Xm,N − xm)
°°°°°

=

Ã°°°°°
nX

m=1

ξm(Xm,N − xm)
°°°°°−Mn

!2
,

hence
kPn

m=1 ξmXm,Nk2
M2
n

≥
µkPn

m=1 ξm(Xm,N − xm)k
Mn

− 1
¶2
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Because kPn
m=1 ξm(Xm,N − xm)k ≤

Pn
m=1 ρm||Xm,N − xm|| = op(1), where the

latter follows from (10.2), and by (10.3), lim infn→∞Mn > 0, it follows now that
with probability converging to 1,

kPn
m=1 ξmXm,Nk
Mn

≥ 1−
Pn

m=1 ρm||Xm,N − xm||
Mn

. (10.15)

Finally, observe from (10.12), (10.13), (10.14) and (10.15) that with probability
converging to 1,

||byn|| = sup
(ξ1,...,ξn)0∈Ξn

½hy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

× k
Pn

m=1 ξmXm,Nk
kPn

m=1 ξmxmk

− hy,
Pn

m=1 ξm(Xm,N − xm)i
kPn

m=1 ξmxmk
¾

≥ sup
(ξ1,...,ξn)0∈Ξn

½hy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

× k
Pn

m=1 ξmXm,Nk
Mn

¾
−||y||

Pn
m=1 ρm||Xm,N − xm||

Mn

≥
µ
1−

Pn
m=1 ρm||Xm,N − xm||

Mn

¶
sup

(ξ1,...,ξn)0∈Ξn

hy,Pn
m=1 ξmXm,Ni

kPn
m=1 ξmXm,Nk

−||y||
Pn

m=1 ρm||Xm,N − xm||
Mn

=

µ
1−

Pn
m=1 ρm||Xm,N − xm||

Mn

¶
||eYn,N ||− ||y||Pn

m=1 ρm||Xm,N − xm||
Mn

≥ ||eYn,N ||− 2||y||Pn
m=1 ρm||Xm,N − xm||

Mn
, (10.16)

where the last inequality follows from ||eYn,N || ≤ ||y||. Because by condition (10.3),
liminfn→∞Mn > 0, it follows from (10.2) and (10.16) that (10.8) holds. The latter
together with (10.7) imply (10.5).
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